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Static Properties of the One-Dimensional Planar Ferromagnet in an External Field
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The thermodynamic functions and the correlation length of the classical one-dimensional
X Y model in an external field are calculated by the numerical integration of the transfer
matrix equation in both ferro- and anti ferromagnetic cases. We show that for a finite but
weak magnetic field the low temperature structure of the ferromagnetic partition function
consists of a spin-wave part and a factor corresponding to the interaction of topological
excitations. The contributions of the soliton like topological objects to the static
properties are calculated through a systematic perturbative method. Finally we discuss in
detail the regions of validity of different analytical approaches by comparing them with
our exact numerical solution.

I. Introduction

where A represents the action of the crystal field. If s
is integer and A> 0 is large enough the sf = 0 state is
favoured (as long as T ~(JsA)1/2) and one can use
instead of (1) an XY model Hamiltonian. For exam
ple the s=1 CsNiF3 has JJkB~9K and AlkB~9K
[3].
It is generally accepted that the classical planar mod
el provides the leading contributions to the thermo-

In the last decade a large amount of experimental
and theoretical work has been done in studying the
properties of one-dimensional magnets [1, 2]. In fact
there exist magnetic crystals in which the localized
spins have a significant one-dimensional behaviour
due to the large intrachain per interchain coupling
ratio. We mention here CsNiF3, TMMC and
RbFeCI3 forming ferromagnetic and CsNiCI3 forming
antiferromagnetic chains with an easy magnetisation
plane. Generally these materials have a three-dimen
sional phase transition at very low temperatures (~
= 2.61 K for CsNiF 3) and show one-dimensional pro
perties above ~.
The theoretical model describing such materials has
the form:

H= -2JsLsiSi+l +AL(sf)2,i
(I)

dynamic properties of (I) if s--->oo [4]. Quantum
corrections can be calculated using an lis expansion.
Therefore if AfJs' s (s + 1) ~ 4 n2 the classical model
represents well the equilibrium behaviour of such
materials [5], except that the crystal field anisotropy
effect is eventually modified by quantum corrections
[3].
In spite of the interesting dynamic properties of the
one-dimensional magnets - tested directly by neutron
scattering experiments - we will deal only with the
equilibrium properties of the classical one-dimen
sional planar model in an external field. In fact our
interest in this model was motivated by recent tech
niques worked out for the two-dimensional case and
leading to vortex-like excitations [6]. The Hamil
tonian of the one-dimensional X Y model is also

periodic and one expects that some kind of topologi
cal objects occur also in this simpler case. The pre
sence and the role played by sine-Gordon solitons in
the dynamics of the system has been studied recently
[7]. Although these solitons start moving around the
chain even under an infinitesimal perturbation, they
give contributions also to the statics of the system. In
fact we show that at low temperatures the partition
function factorizes into two parts: one corresponding
to the harmonic approximation and the other con-
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one can easily calculate the matrix elements of the
(asymmetric!) perturbation. For example

< pJO)1 V I PJO» =I I I k(K) bk,° bm+k, °
k m

remaIn degenerate

(II)

where the argument of I's is K.
The correlation length is calculated from (10-11):

Low Temperature Representations

Two limiting cases are usually studied to determine
..1.0 at low temperatures. In an infinitesimal magnetic
field (K -> 00, h K is fixed) the average orientation of
the spins is slowly varying from site to site and the
width of the single spin distribution (described by
t/1 o( (fJ)) is large. The transfer operator eigenvalue
problem (5) can be transformed into a Sturm-Liou
ville eigenvalue equation and one has to calculate the
lowest eigenvalue of a Matthieu-type equation [8].
For completeness this result is rederived in a simpler
way in the Appendix. Generalizing this mapping to a
dynamics with propagating modes Mikeska [7J has
recently obtained ,a sine-Gordon equation of motion
and has shown that the soliton solutions give mesur
able effects in the dynamics of CsNiF 3'
We shall discuss in detail here the second case, when
one has a finite external field

In that situation the spins are fluctuating with a small
angle around their ground state values (spin waves).
Our purpose was to go beyond the usual harmonic
approximation by taking into account topological
excitations (spin configurations where the orientation
of the spins changes over several interatomic dis
tances more than 2 n).
We rewrite the partition function (3) in Fourier space
at low temperatures. We calculate the Fourier trans
form of the whole kernel exp(h((fJ, (fJ')) after expanding
h((fJ, (fJ') around its ground state (T=O) value up to
second order terms. We get for the Fourier transform
of the kernel:

T(m, n) = C exp { -A(m-n)2 -B(m+nf}, (14)

where

The partitIOn function can be expressed using (14)
and the Poisson resummation formula:

Integrating over ~/s, one recovers the product of the
spin wave contribution and a factor describing the
interaction of integer valued fields {mJ:

A-1=8K (I+~) B-1=2KT4 ' ,

C-1 =2nK(2T(T+4))1/2e-K-h.

(12)

in second order.

The same procedure applied at high temperatures
leads to

If(h)

)~0(K~I,h)=Io(h)+K0+"" (13)1o )

Note that the zero field susceptibility calculated from
(10) agrees with the results of Stanley [IIJ while for
K -HfJ, h = 0 the correlation length (12) goes to the
result of Wegner [12]. In the anti ferromagnetic case
one has to change K to - K and then In (K)->

(_I)n In(K) in Eqs. (10-12).

Z(K~I,T)=CN I STId~i
{m,} i

. exp(2niImiOTIT(C~i+l)'i
( IS)




